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Abstract-A perturbation analysis of diffusion-reaction systems exposes the effect of local thermal equi- 
librium as an extremal property of systems which minimize dissipation. The effect is also shown to be 
sufficient for stability of small perturbations relaxing towards steady-states close to equilibrium. Several 
variational principles are constructed for perturbations in chemically reacting systems with simultaneous 
transfer of beat, mass and electric charge. The underlying physical principle, which substantiates the joint 
role of themlodynamic potentials and intensity of dissipation, is invariance of the energy dissipation. The 
formulatiorrr of perturbed dynamics include : a nonstationary extension of Onsager’s principle, gradient 
representations with a perturbed vector of thermal displacement, perturbed potentials of thermal field, and 
functional H amiltonian formalism. Each formalism works with the assumption of local thermal equilibrium 
which, in our analyses, is a common property of asymptotic states of various orders. An important result 
is inclusion Iof chemical reactions into perturbational dynamics, with chemical nonlinearities governed by 
the standard. kinetics of mass action law. We also present a novel method, based on equivalent variational 
problems, which implies transformations between various thermodynamic potentials at nonequilibrium. 
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1, INTRODUCTION 

Chemical perturbations relaxing towards non- 
equilibrium steady states obey nonlinear laws of 
chemical kinetics, the most popular being the mass 
action law. In this work, we consider these per- 
turbations coupled with transfer of the heat, mass and 
electric charge, in systems which are in mechanical 
equilibrium. Through variational principles for the 
state perturbations we investigate the effect of the local 
thermal equilibrium which, in our analysis, appears as 
a unique property of both transients and steady states 
of various orders. The uniqueness of the effect mani- 
fests through a common property of various asymp- 
totic states in which the Lagrangian multipliers of 
balance constraints coincide with the Gibbsian deriva- 
tives of the governing thermodynamic potential. 

There have been numerous approaches to gen- 
eralized extremum principles for nonstationary non- 
linear evolutions. The classical works of Onsager [l- 
41 and Prigogine [!!I dealt with linear irreversible pro- 
cesses. Gyarmati’s, quasi-linear generalizations [68] 
while of a considerable generality, belong to the class 
of restricted principles of Rosen’s type [9], or local 
potential type [ltl], where some variables and/or 
derivatives are subjectively ‘frozen’ to ensure a correct 
result. Essex [ 1 l] has proved a potential of minimum 
entropy theorems I o yield nonlinear balance equations 
for radiative tran:sfer. Mornev and Aliev [12] have 
formulated a functional extension of the local Onsa- 

ger’s principle. Using a caloric coordinate Grmela and 
Teichman [ 131 stated an H theorem as a proper setting 
for the maximum entropy in Lagrangian coordinates. 
Grmela [14-171 and Grmela and Lebon [18] have 
worked out an efficient two-bracket formalism, with 
Poissonian brackets and dissipative brackets, the lat- 
ter being a functional extension of the Rayleigh dis- 
sipation function [ 191. With applications to rheology, 
bracket approaches have systematically been exposed 
in a recent book [20]. However, two-bracket theorems 
are not associated with an extremum of a definite 
physical quantity ; for that purpose the single Pois- 
sonian bracket and a Hamiltonian system are necess- 
ary. Yet Nyiri’s [21] approach has introduced certain 
potentials, similar to those known in the electro- 
magnetic field theory, and related integrals which were 
subject to extremization. Their application to non- 
reacting systems has proved to be of considerable 
utility [22-241, although the inclusion of chemical 
reactions has required treating chemical sources as 
given functions of time and position. 

This work deals with the inclusion of chemical reac- 
tions into perturbational formulation of the second 
law, in which Lagrange multipliers handle balance 
constraints. Similar formulations have so far been 
restricted to nonreacting systems, both parabolic [25, 
261 and hyperbolic. These approaches may been seen 
as being of the type of Liu’s multiplier method, but 
since they deal with an explicit dissipation formula 
and the second law in an equality form, they lead to 
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NOMENCLATURE 

A vector of chemical affinities V volume 

z 
matrix of thermostatic capacitances W Onsager’s vector of independent 
column vector of densities, equation transport intensities or Lagrangian 
(4) multiplier of conservation laws 

c, molar concentration of ith component X vector of independent thermodynamic 

2 
molar energy of unit volume forces, equation (6). 

fi 

Biot vector associated with flux Ji 
dissipative (thermodynamic) 
Hamiltonian 

Greek symbols 

molar flux density of electric current 
A, Lagrangian density of dissipative field 

; 
V 

column matrix of independent fluxes, 
nabla operator 

6 
equation (1) 

perturbation operator 

; 
extended stoichiometric matrix 

J, density of total energy flux 
Ji molar flux density of ith component 

electric potential 

JS density of entropy flux 
pk molar chemical potential of kth 

k thermal conductivity 
component 

L Onsagerian matrix of 
/& = P&M,’ -pk transfer potential of 

phenomenological coefficients 
kth component (d = -&J 

0 
L, dissipative (thermodynamic) 

production terms per unit volume. 

Lagrangian 
Mk molar mass of kth component Subscripts 

P power criterion e total energy 

R resistance matrix i ith component 

S, ST total entropy and its Legendre S entropy 

transform, respectively 0 dissipative property. 

S” entropy of unit volume 
T temperature Superscripts 
t time entropy representation 
U Gibbsian vector of independent ; transpose matrix, Legendre 

thermodynamic intensities, transform; transformed quantity 
equation (5) I free-energy representation. 

quantitative rather than qualitative results. Chemical 
systems could also be treated by Anthony’s variational 
method [29-331 which uses a ‘field of thermal exci- 
tation’, a thermal counterpart of quantum wave func- 
tion, and certain reaction potentials, at the expense 
however of undefined physical origin of these poten- 
tials and their relation to the mass action law. Other- 
wise, our variational method, which is applied here to 
the state perturbations rather than to any unperturbed 
dynamics, uses only classical quantities, the most 
essential being the nonlinear chemical resistance [35- 
381. With chemical resistances, nonlinear variational 
and extremum formulations for lumped systems are 
possible [3741]. In the present work they are applied 
to perturbed reactiondiffusion fields in the Eulerian 
representation of transport phenomena. 

Whenever irreversibility enters into the issue, the 
admissibility of a variational formulation needs a solid 
substantiation. As it has already been explained [25, 
261, we only briefly recapitulate here the argument. A 
system of differential equations admits a variational 
formulation if and only if it is self-adjoint [42-47], the 
property which requires that stringent conditions for 

the related differential operator are satisfied. The typi- 
cal equations of irreversible processes are, as a rule, 
not self-adjoint [46, 481, which means that they do 
not admit variational formulation in the state-space 
spanned on their own dependent variables. However, 
the so-called composite principles, in the extended 
space spanned on the original state variables and cer- 
tain new variables (state adjoints), are always possible 
[42,47]. In fact, all successful variational formulations 
for irreversible systems do involve a space expansion. 
This also refers to formulations which use higher order 
functionals [21-241, which can be broken down to 
those based on the first order functionals in enlarged 
spaces. These properties are also shared by many 
action-based approaches for irreversible and revers- 
ible processes [31,49-551. Reviews and books on this 
subject are available, see refs. [5&61]. With these 
findings, the conservation laws and the idea of the 
minimum dissipation in the case of physical fields 
described by thermodynamic potentials [62, 631, here 
we develop a perturbational thermodynamics of the 
diffusion-reaction systems around nonequilibrium 
steady-states. We assume that a steady-state is 
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sufliciently close to equilibrium so that the Onsagerian 
reciprocity still may be assumed. 

For the standard set of the balance constraints (with 
balances of the energy, momentum and species), in 
the entropy generation functional the new or adjoint 
variables are a type of the transport intensities [27]. 
The distinction beiween the classical Gibbsian inten- 
sities u (the temperature reciprocal and Planck chemi- 
cal potentials or the partial derivatives of entropy 
with respect to emrgy and mole numbers), and their 
transport counterparts w (Lagrangian multipliers of 
balance equations), is essential in order to distinguish 
between arbitrary macroscopic states and thermo- 
dynamic states (of asymptotic nature) in both con- 
tinuous [27] and lumped [64] systems. While both II 
and w play a role in thermodynamic functionals, their 
distinction is appropriate off local thermodynamic 
states (‘local thermal equilibria’) when a dynamic 
behavior is considered, as only then local or instan- 
taneous potentials of transfer are not necessary ther- 
modynamic quantities. The distinction is neither 
necessary nor possible for descriptions which ignore 
any dynamic development, such as typical for- 
mulations of the maximum entropy formalism [65] 
with the Lagrange multipliers referring to the final 
state of equilibrium rather than to a variety of inter- 
mediate states. Yet, the distinction is appropriate in 
perturbational dynamics studied here, although, due 
to the commonness of the asymptotic (thermo- 
dynamic) states in physical systems, the two vectors u 
and w coincide for large majority of physical situations 
so that the condition u = w should a posteriori be 
imposed for most models of heat and mass transport. 
When u = w, the equations of change are equations 
dependent on the conservation laws and phenom- 
enological equations. On the other hand, when u and 
w differ, the equations of change follow independently 
of the conservation laws and phenomenological equa- 
tions. 

The hypothesis of the stable ‘local equilibrium’ is 
substantial in classical nonequilibrium thermo- 
dynamics. As that theory extrapolates methods of 
statistical mechanics to nonequilibrium situations, 
one has to assume that, at any time, each region of 
the system is in a macroscopic status so that it can be 
completely defined by a set of macroscopic or ther- 
modynamic variables (those of a Gibbs equation). To 
call this status ‘the local equilibrium’ as it is commonly 
done is rather misleading, firstly because one should 
rather speak about the ‘local thermal equilibrium’ or 
‘restricted equilibrium’ when only some degrees of 
freedom relax instantly. For reacting systems, 
especially, it is more appropriate to speak about the 
local thermal equilibria corresponding with the situ- 
ation when relaxation of thermal degrees of freedom 
is immediate. A true local equilibrium would be a 
more restrictive situation, the one with vanishing reac- 
tion rates at a particular point of the system, which is, 
in fact not a case for real nonequilibrium systems. 
Secondly, since there is not a apriori any requirement 

of vanishing chemical affinities for chemical potentials 
obtained from the Gibbs equation, this equation is, in 
fact, an equation of nonequilibrium thermodynamics, 
and, in the case of chemical systems, the local ther- 
modynamic equilibrium is not satisfied even in classi- 
cal thermodynamics. In fact, what is actually satisfied 
for a large majority of macroscopic systems is a ther- 
modynamic-limit property of the energy and other 
thermodynamic potentials which depend on a small 
number of macroscopic variables (including rates or 
fluxes in extended thermodynamic systems). 

In our theory, the local thermal equilibrium is a 
unique property of various thermodynamic states, 
which manifests through the common asymptotic 
property of macroscopic states for which the Lag- 
rangian multipliers of balance constraints w coincide 
with the Gibbsian derivatives, u. The behavior of u 
and w separates the local equilibrium and local dis- 
equilibrium situations in continua in a natural way. 
The limiting equality u = w is valid for both steady- 
state thermodynamic processes and for those which 
are not necessarily stationary. For steady states, it 
holds regardless of whether only some of all the species 
(e.g. first N’ species) diffuse (whereas the system 
boundaries are closed to diffusion of remaining spec- 
ies): or all the species are allowed to freely diffuse 
in and out of the system (N’ = N). These different 
situations correspond to various steady states, of 
different order N’. The unifying equality u = w is the 
only general relationship obeyed on various limiting 
manifolds representing various steady states, and 
importantly, it holds for both parabolic and hyper- 
bolic equations of the heat and mass transfer [27]. In 
this respect, the equality of two sorts of intensities 
replaces with improved precision the vague meaning 
of ‘local equilibrium’, by showing that this traditional 
meaning is not entirely proper for nonequilibrium 
steady states with a nonvanishing difference or ‘slip’ 
between the transfer velocities of moving species. The 
presence of the slip in these systems means that they 
admit only certain ‘pseudo-local-equilibrium’ struc- 
tures, those with some production of entropy, which 
still satisfy the equality u = w, but in which the ther- 
modynamic behavior is different that at equilibrium 
(in particular, the role of inertial terms is different). 

Dealing with a perturbed continuum one should 
consistently use a model containing the perturbations 
of both the state variables and their adjoints. An 
excess of dissipation intensity with respect to a steady 
state is described by two perturbed dissipation func- 
tions of Onsager’s type, 6% and a2Y’, expressed in 
terms of the extended state (C, J) [or (u, J)], its per- 
turbations, 6C and 6J, and the derivatives of per- 
turbations, a&T/at, V&Z, etc. An excess entropy four- 
vector (as,, SJ,>, may depend on excesses of both the 
classical (static) variables 6C and fluxes 6J and the 
excesses of the Lagrange multipliers 6w. We show that 
by implying a least increase of the integral rep- 
resenting the excess entropy production during a tran- 
sient relaxation to a steady-state in a nonisolated 
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chemical system, one can derive the perturbed equa- 
tions of change and perturbed phenomenological 
equations under the given (perturbed) dissipation 
potentials and the well known information contained 
in the (perturbed) conservation laws. These results 
are exposed through a few variational principles for 
perturbations, in several new and important contexts, 
such as : 

??Gradient representations which use Biot’s vector of 
thermal displacement [66] and thermal potentials 
introduced recently [21-241. 

??Chemical nonlinearities governed by the mass action 
kinetics [34]. Their variational formulation is of a 
special importance as it makes it possible to solve 
complex models of reaction-diffusion processes by 
direct variational methods [67]. 

??Nonequilibrium thermodynamic potentials for 
inhomogeneous systems and their relation to basic 
statistical mechanics [68]. 

??The link between Lagrangian and Hamiltonian 
descriptions of perturbations. 

The system considered is with various chemical 
reactions and transport phenomena in the bulk. 
Mechanical equilibrium, consistent with the con- 
stancy of the total mass density p and vanishing bary- 
centric velocity in a suitable reference frame, is 
assumed. The system, which may be electrochemical, 
is composed of components, reacting, but neutral [69- 
711, obeying the phase rule [72]. As shown by Sun- 
dheim [69] this setting leads to the independent fluxes 
of mass, energy and electric current. For an ionic 
description see ref. [73]. 

2. PERTURBED NONREACTING FIELDS WITH 

HEAT AND MASS TRANSFER 

To acquaint the reader briefly with the various vari- 
ational methods which one might use in analysis of 
perturbations we consider first (Sections 2 and 3) non- 
reacting systems. Then we will choose a suitable 
method and pass to reacting systems, which is the 
main goal of this paper. Under assumptions of neg- 
ligible convection, absence of viscosity terms, and elec- 
troneutrality, the perturbed conservation laws which 
describe transients of energy, mass and electric 
current, are in the matrix notation 

asc 
,t+V.SJ=O. (1) 

The immediate relaxation of the electric current fol- 
lows as consequence of the electroneutrality effect 
incorporated in the model, nonetheless we will use 
equation (1) in its nontruncated form, to allow the 
common description of all involved quantities and 
generalizations to some complex cases. In equation 
(l), J is the matrix of independent fluxes 

J=(J,,J,,J, ,..., J,,-,,QT (2) 

(the superscript T means transpose of the matrix) J, 
is the total energy flux defined as 

J, = J,+qbi = Jq+~h,Jr+c$i. (3) 
1 

The corresponding column vector of densities C is 

C(e,,c,,c,,...,c,-,,c,,)~. (4) 

The nth mass flux J, has been eliminated by using 
the condition Z J,M‘ = 0 for i = 1, . , n. The last 
component of C vanishes because of the elec- 
troneutrality. The independent transfer potentials are 

u =(T-‘,jl,T-‘,j&T-‘,. . .,jl_, T-‘, -cjT-‘) 

(5) 

with pk = I*,M,M; ’ -pk. Their gradients X = Vu are 
independent forces 

X = Vu =(VT-‘,V@, T-l), 

V&Tp’), . ,V(/&_, T-‘), -V@JT-‘))~. (6) 

The densities, equation (4) and the transfer potentials 
equation (5) are the two sets of variables in the Gibbs 
equation for the entropy density s, = ps of an incom- 
pressible system with the mass density p = C Micp 

Our analysis of perturbed dynamics differs from 
that encountered in the classical analysis of ther- 
modynamic stability [lo], which uses the entropy 
differentials 

6s,=u.E; d*s,=&t.JC<O. (7) 

Instead, following the method developed earlier for 
nonreacting systems [26], one may consider the per- 
turbations of the entropy four-vector, [s,(C), J,(J, C)], 
where J,(J, C) = J *u = J * as,/aC. One then obtains 
the quantities 6(s,, Js) and l/26*&, Js) describing the 
once-perturbed and twice-perturbed entropy four- 
flux. The four-divergence of the second differential 
of the entropy four-vector 1/26*(a,.ss,, V -J,) combined 
with once-perturbed conservation laws, equation (l), 
yields the excess entropy production 1/2&r. The 
superiority of this method over the classical one fol- 
lows from the notion that the second-order per- 
turbation of the entropy four-flux yields the excess of 
the entropy production in the general case, without 
traditional restrictions related to the fixed state at the 
system boundaries or purely dissipative nature of the 
process. In terms of the conserved fluxes, for non- 
reacting systems 

- f: sJi.VG(~;T-‘)-6i.V6(~T-‘) = cSJ;V6T- 
i=L 

n--l 
+ 1 sJ,.Vs(p,T-‘)-si.V6(~T-‘) (8) 

i=, 
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with 

These equations contain (in the perturbed and unper- 
turbed forms, respectively), the matrix of independent 
fluxes J, equation (2), the vector of the transport 
potentials u, equation (5), and the associated vector 
of the independent thermodynamic forces X = Vu 
equation (6). The kinetic coefficients implicit in equa- 
tion (8) are assumed to be constants (steady states 
close to equilibrium). 

The perturbed conservation laws, equation (1) 
are built into the entropy functional, equation (10) 
below, with the help of the perturbed vector of the 
Lagrangian multipliers 6w = (6W,, 6W,, Bwz, . . . ) 
6w,_ ,, hw,). The extremum value of the multiplier 6w 
in the entropy functional (10) is the vector of the 
kinetic conjugates of the perturbed extensities K, 
equation (4). On the extremal surfaces of the entropy 
functional, equation (lo), the vector w coincides with 
the transport potential vector u, equation (5), in the 
limiting situation of the local equilibrium. This coinci- 
dence, which also takes place for the perturbations 
&I = 6w, does not occur off any extremal non- 
equilibrium solution and, therefore, w and u as well 
as 6u and 6w are generally two distinctive sorts of 
the field variables :m the entropy functional, equation 
(10). As long as the constraint w = u is not imposed, 
they constitute two fields independent of each other. 
The quantities w and u may be interpreted, respec- 
tively, as the kinetils (Onsagerian) and thermodynamic 
(Gibbsian) intensities which coincide in a stable 
extremal process with ‘local equilibrium’. Any kinetic 
intensity is the Lagrangian multiplier of the related 
conservation law, whereas any Gibbsian intensity is 
the appropriate pa.rtial derivative of the entropy with 
respect to the adjoint extensity. On extremals w = u 
and 6u = 6w, meaning that the extremal Lagrangian 
multipliers 6w coincide with the components of the 
entropy gradient in the state space of 6C,. In a limiting 
(local equilibrium) situation w, and 6wi converge 
respectively to the classical intensities, equation (5), 
and their perturbations. In the extended ther- 
modynamics models these quantities converge to cer- 
tain flux-dependent intensities that are still the partials 
of an extended entropy although they then depend on 
both Cj and Jp Thi: equalities w = u and 6u = 6w also 
hold in these extended situations. One may consider 
that a ‘pseudo-local-equilibrium’ situation is created 
at stable steady states far from equilibrium, and then 
w may converge to the above mentioned, non- 
equilibrium intensities u. On stable extremal solutions 
6w = 6u and both tend to vanish at t + 00. 

One of the main reasons for using variational 
approaches (leavmg apart, of course, their com- 
putational virtues) is our general research direction 

towards extending Callen’s postulational thermo- 
dynamics to inhomogeneous thermodynamic systems. 
To simplify the notation we use the single-integral 
symbols for multiplied integrals in the physical space- 
time. The governing functional describes the dynamics 
of small perturbations between the two fixed times t, 
and a subsequent t2 

ta’S(l,) = min 
( 

;m(t,) 

I f2 
+ 

I,,.4 
- ~6’JS(SJ,&Q.dAdt 

+ : 6J6J 

(10) 

where J,(J, u) is simply the product J *u. A simple 
derivation of such functional structures from an error 
criterion has been given in earlier works [27, 401. ‘By 
direct application of the divergence theorem to the w 
term in the unperturbed counterpart of equation (10) 
it can also be shown that (in the steady state case of a 
system satisfying w = u) the above functional can be 
broken down to Onsager’s functional which leads to 
the kinetic equations (as the only result) through the 
restricted variation of fluxes (at the constant ther- 
modynamic forces X). At a steady-state, when only J 
is varied and w converges to u on the extremal surfaces, 
the Onsager’s functional and his kinetic equation 
J = L * Vu follow from the unperturbed counterpart 
of equation (10) as the only steady-state formulae. 

However, in the unsteady situation, for the per- 
turbed states, equation (10) yields, as the Euler-Lag- 
range equations with respect to the variables &I, 6J 
and 6w, a more general result. It is a quasilinear set 
representing (at w = u and 6u = 6w) the standard 
model of the unsteady transfer of heat, mass and elec- 
tric charge. The Euler-Lagrange equations of the 
entropy functional with respect to the small per- 
turbations 6w, 6J and 6u around a steady state which 
is close to equilibrium are respectively 

asqu) 
,t+V*SJ=O (1) 

L(u)-’ .6J = V6w (11) 

a(u).g= V*(L*VGu) (12) 

where a(u) = -X(u)/au is the thermodynamic 
capacitance matrix or the negative of the entropy hess- 
ian. From the viewpoint of the completeness of the 
physical equations as extremum conditions of S, the 
second law Lagrangian we use, i.e. the integrand of 
space-time integral in equation (lo), does a good job 
since it leads to all pertinent equations, the property 
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which is essentially not obeyed for previous models. 
The perturbed conservation laws, equation (l), are 
recovered; the other results are the perturbed phenom- 
enological equations and the equations of change. The 
last equation is the perturbed Fourier-Kirchhoff type 
matrix equation of change which links the fields of the 
temperature, chemical potentials and electrical poten- 
tial. At the local equilibrium, when all states of the 
system are located on Gibbs manifold, the equalities 
w = II and 6w = 6u hold, and the three equations (1) 
(11) and (12) become dependent. This is the well- 
known classical situation, in which only a subset of 
possible solutions is realized in practice. 

Otherwise, it may be shown that equation (10) is 
capable of describing situations in which the poten- 
tials u and w differ, in particular those which, perhaps, 
may be referred to case of inherent local nonequilibria 
and instabilities. Since however the reference state is 
not varied, the functional, equation (10) cannot pre- 
dict neither equality II = w nor other properties of 
reference state, as e.g. the function L(u). As the 
properties of the background (steady-) state, they 
must be assumed or evaluated from the unperturbed 
dynamical model in which the rates as set to zero 
at the reference state. This is typical in the stability 
analyses. The corresponding equality 6w = &I has also 
been assumed. 

3. PERTURBATIONS IN GRADIENT INVARIANT 

FUNCTIONALS 

We now propose a different variational formulation 
which makes use of the perturbations of so-called 
Biot’s [66] thermal displacement vector, H,, in the 
integrand of the entropy functional. Actually, as long 
as the system is multicomponent, one has to apply a 
set of such vectors, associated with the energy flux, 
component fluxes and electric current, 

H=(H,,H,,H*,...,Hn-,,He,)T. (13) 

They refer to each vector component of the matrices 
(2) and (4). Since the perturbation of each flux and 
each density satisfy the gradient representations 

6J =kf!! 
at (14) 

and 

6C = -V.6H (15) 

the perturbed conservation laws are identically satis- 
fied. Indeed, the addition of the divergence of equation 
(14) to the partial time derivative of equation (15) 
yields equation (1). 

where &Z(X) = 0, but ah(t) is an arbitrary pertur- 
bation. With this result, one couldn’t a priori judge if 
the model of the process transients should be 
described by equations (l), (20) and (21) with non- 
vanishing ah(t) or by equations (l), (11) and (12). 
The only reasonable way to resolve the dilemma is to 
restrict the structure of independent equations to the 
range implied by an experiment or microscopic trans- 
port theories. This in turn means their dependence 
associated with taking w = u (implying 6u = 6w) 
along with &e(x) = 0, and 6h(t) = 0. Thus, it is the 
physics of the problem which requires one to restrict 
to the case when &Z(X) = 0, ah(r) = 0 and w = u. 

To obtain the Euler-Lagrange equations for per- For the same parabolic problem the so-called trans- 
turbations from a functional based on the rep- fer potentials introduced in Nyiri’s [21] approach can 
resentations (14) and (15) it suthces to substitute these be used in case of linear transients. Gamber and Ma’r- 
equations into the production part of the entropy kus [24] have constructed a dissipative Lagrangian 
functional (10). Restricting to linear perturbations obtained through squaring the variational adjoint of 

(the case of constant coefficients) yields 

+;W:V(V*GH)V(V.SH) dI’dt (16) 
1 

where the positive symmetric matrix W has been 
defined as 

WE a-‘TLa-’ (17) 

The Euler-Lagrange equation for the functional 
(16) describes the matrix 6H composed of the per- 
turbed Biot’s vectors 

L-1 
a26H 
- - WV2(V26H) = 0. 

at2 
(18) 

With the representations, equations (14) and (15), 
equation (18) can be given in the form 

L-1 g +wv(v6c) = 0. (19) 

Equation (19) holds with the conservation laws, equa- 
tion (1) contained in equations (14) and (15). The 
system is now characterised by equations (14), (15) 
and (19). (Note that equation (19) followed from 
equation (16) without any prior recursion to the con- 
dition w = u, and that it can also be obtained by 
elimination of the multipliers 6w from equations (11) 
and (12).) However, when one wants to obtain the set 
of equation (l), (11) and (12) from this model than a 
more general equation set is admitted by equations 
(14), (15) and (19) 

(1) 

L(u)-’ *6J = VOW+& 

a(u) q = V .(LVGu) + &z(t) 

(20) 

(21) 
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the equation of change. For perturbed dynamics this 
is equation (12) at 6u = 6w. The variational adjoint, 
which is next identified with the perturbation 6u, is, 
in our notation 

6u TI _a? -LVQ&p (22) 

(their p& = - a; ’ ) The perturbations of the thermal 
potentials, S$, are described by the second order Lag- 
rangian 

L(&#J, S+,,, 64,,) == i 
( 

a$$ +LV’@ 
> 

2 
(=$l2). 

(23) 

This Lagrangian yields the Euler-Lagrange equation 
for transients 

a$ 
( 

aT+LV’&$ -LV2 
> i 

aT+LV’&$ 
> 

= 0 

(24) 

which is satisfied by equation (22) in the form 

-a;6u+Lv’6” = 0. (25) 

This is a form of the Fourier-Kirchhoff equation in 
terms of transients. The approach based on thermal 
potentials has resulted in a number of original 
interpretations and a field theory of nonequiiibrium 
thermodynamic systems [22-241. These ingenious 
analyses provide equations of change, and extra physi- 
cal conditions, obtained from certain invariance 
requirements, should be satisfied to obtain the kinetic 
equations or conservation laws from equation (23). 
This conforms with our earlier conclusion that physi- 
cal analyses should accompany the variational results. 
Indeed, it is easy to see that equation (24) is satisfied 
in the form of equation (25) not only by equation 
(22), but, also, by the more general representations 
containing a functionf(x, 2) 

6” = -a% -LV%#J-6f(x, t) (26) 

provided that the perturbation 6f(x, t) obeys the equa- 
tion 

$rx, t)+V2c?flx, t) = 0. (27) 

Consider a one- potential process withf = 1/2x2 - 3 t 
as an example. In the present approach, the rep- 
resentations, equation (26) are, however, rejected on 
account of the simpler representations, equation (22) 
which are regarded as ‘more physical’ since they obey 
the gradient invariance. One may argue that the 
adjoint quantities are ‘non-physical’ anyhow, so there 
is no matter which representation, equation (22) or 
equation (26) is used. However, the restrictions 

imposed on definition of potentials may have physical 
reasons. Consider, for example, restrictions on 
electromagnetic potentials [74]. Another example are 
momenta of classical mechanics, which are adjoints 
of coordinates. Therefore, physical limitations must 
accompany the representations of transients expressed 
in terms of the potentials. 

4. TRANSIENTS IN NONLINEAR REACTION- 

DIFFUSION SYSTEMS 

In reacting systems, in terms of the conserved fluxes 
and associated forces, the excess entropy production 
takes the form 

-i sJi.V6(~iT-‘)-6i.V6(~T-‘)+6A”.6r 
i=, 

n--l 

= 6J;V6T-’ + 1 6Ji*V(c5piT-‘) 
i= I 

+&*V(-6+T-‘)+6A”*& = 6J.V6u 

+ 6A” * 6r. (28) 

This expression, which generalizes equation (8), is 
consistent with the classical theory of nonequilibrium 
thermodynamics and equation (9) for the entropy 
flux. A generalized form of the functional, equation 
(10) which uses the excess entropy production should 
be applied for chemically reacting systems to describe 
transient behavior of small perturbations. Two per- 
turbed chemical dissipation functions should be intro- 
duced into equation (10) and the balance expression 
must contain the chemical sources of each species in 
all reactions. Around the steady states which are close 
to equilibrium. 

iS’S(t,) = min 
( 

+I2S(r,) 

s 

‘2 
+ 

I,,.4 
- ;S2J,(6J,Su).dAdl 

+ : 6J6J+ ;L(u) : V6uV6u 

+ ;R: &6r+ ;R-’ :(~‘~Gu)(v’~Gu) 

+ 6w. asc(“> -+V*aJ-v’6r at (29) 

The term v’~~u represents the perturbation of an 
extended vector of the chemical affinities in the 
entropy representation, A”, which is defined below. 
Both R terms refer to chemical dissipation described 
by the nonlinear chemical resistance R. It is important 
that the background reference state may be highly 
nonlinear. This property follows from nonlinear 
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chemical resistances (of the entropy representation) 
which are consistent with the mass action law of Guld- 
berg and Waage [34]. They obey the logarithmic for- 
mula [35-381 

R,(C) = 

i= 1 i= 1 

Here ai = a,(C) are the activities expressed as func- 
tions of the reference state, and R is the gas constant. 

We now use the mass conservation law for each 
chemical reaction vTM = 0 and an appropriately 
extended stoichiometric matrix 

I vrj = 

VOI . ..VOj . VON 

. . . . . . . . . 

Vi’ . . . vi, . . vi,aJ (31) 
. . . . . 

VttI . . . v,, . . . V,N 

where the rows for k = 0 and k = n vanish cor- 
responding with vanishing stoichiometric coefficients 
for the energy and electricity, to be consistent with 
the conservation laws. With the independent transfer 

ation (5), and independent mass fluxes 
of the jth reaction (the index n 

ere to the last mass component) 

Aj = - i vii/ii = - (vTp)j 
i= I 

can be transformed into its entropy-representation 
counterpart which operates with the reduced (tilde) 
chemical potentials. In the present formalism the latter 
are the thermodynamic forces of mass transfer and 
satisfy the definitive equation 

pi = p,M,M, ’ -pi. (33) 

The standard affinity can then be extended (mark 3 in 
equation (34)) to an expression which can deal with 
all components of the transfer potential vector, equa- 
tion (5) 

A; = - 5 T-‘vijpi = - i T-‘vij(p,,MiM,’ -/Ii) 
i=l i=l 

n--l 

= z, T-‘Y;,P;*(V’~“)~. (34) 

The explicit formula for the transpose of the 
extended matrix of stoichiometry is 

,T v jj = 

. . . . . . 

vOj . . . vi,. . . . vnj (35) 
. . . . . . . 

VON . . . v&r . . . V”,aJ 

where the component index changes from 0 (energy), 
through 1,2 . . n - 1 (independent mass components), 
to n (electric current). To verify how the extended 
vector As works, one can multiply the transformed 
stoichiometric matrix (35) by the transport potential 
vector, equation (5). As long as all the extra stoi- 
chiometric coefficients voj and v,,~ vanish, the con- 
sidered product is the vector A/T whose components 
are ratios of the usual affinities A, and the temperature 
T. This justifies the use of extension, (34) in the vari- 
ational principle for perturbations, associated with the 
minimum of the integral (28). A gauged functional, 
obtained by applying the divergence theorem to the w 
term of equation (28) can also be used 

;L-‘(u) : 6J6J+ ;L(u) : V&IV&I 

+ :R-’ :(v’T~u)(v’T~u) + ;R: &&-X(u) g 

-6J*V6w--6w*v’6r dVdt. (36) 
I 

This functional has been shown to be more suitable 
than the original integral, equation (28), for setting 
the Hamiltonian formalism. 

The necessary extremum conditions or the Euler- 
Lagrange equations are the same for the functionals 
(28) or (36). With respect to the perturbations 6w, 6J, 
6r and 6u they are respectively 

6ac(“) - +V*6J = v’6r at 

I,(u)-’ *6J = V6w 

R(u) * 6r = v”6w 

a(u)? = V*(LVGu)-v’R-‘aA” 

,zw V *(LVGu) - v’6r 

(37) 

(38) 

(39) 

(40) 

where a(u) = -X(u)/au and A” = v’~u. The per- 
turbed conservation laws, equation (37) contain the 
production terms which are nonvanishing for i = 1, 
. ..) n. For the energy and the electric charge (i = 0 
and i = n) the production terms are absent because 
these quantities are conserved. The perturbed trans- 
port is described by equation (38) whereas the per- 
turbed chemical Ohm’s law is represented by equation 
(39). The perturbed equation of change (40), which 
links the perturbations of the temperature, chemical 
potentials and electrical potential, does contain the 
perturbations of sources. We recall at this point that 
the numerator of equation (30) is an expression for 
the chemical affinity A” = V’~U [37]. Thus, provided 
that the ‘local thermal equilibrium’ limit takes place, 
i.e. u = w, and the chemical resistances satisfy equa- 
tion (30), equation (39) is the perturbed mass action 
kinetics of Guldberg and Waage. The limiting (‘local 
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equilibrium’) perturbations of sources in equations 
(37) and (40) are described by the vector 

VOI . . . vo,, . . VON ar, 
. . . . . . . . . . . . 

sa = vi, . . vi, . . VfN ar, 
. . . . . . . . . . 
VIZ1 . . . v,, . v,,hJ dr, 

(41) 

It is interesting that one might extend the mass 
conservation in each chemical reaction so that certain 
molar masses associated with the energy and elec- 
tricity could be assumed in the conservation equations 
(37). An analysis using the relativistic equivalence of 
the inertial mass and the energy leads then to the 
conclusion that an effective temperature reciprocal 
(with tilde sign) should replace the usual temperature 
reciprocal T-’ 

T-’ = T-‘(l+p,M,‘/c*). (42) 

This means that only for c -+ cc can the classical tem- 
perature be an exact potential for the energy transfer. 
A correction can aho be found for the electrical poten- 
tial 

which is attributed to the finite molar mass of elec- 
trons. Only for hrel/Mn = 0 (massless electrons in 
comparison with molecules) can the traditional elec- 
tric potential be an exact potential for the electricity 
transfer in descriptions using an independent set of 
fluxes. It is easy to see, however, that these corrections 
are negligible, and our basic description which ignores 
them is sufficiently exact. 

5. PERTURBED THERMODYNAMIC POTENTIALS 

AND COMMON EXCESS DISSIPATION 

An important feature of the four-divergence of the 
entropy four-vector perturbation S*a leads one to the 
excess entropy production without any limitations 
related to the system behavior at its boundary. More- 
over, in place of the four-vector of the entropy, a four- 
vector of another thermodynamic potential can be 
used, which is obtamed from the former via Legendre 
transformation for each vector component, and the 
four-divergence of the second differential of that new 
four-vector again yields the same excess entropy pro- 
duction. This can be shown in case of the local equi- 
librium (where J, z= J * u) for the four-vector of the 
thermodynamic grand potential (s:, JT) which is the 

following set of the four Legendre transforms for the 
entropy four-vector (s,, JS) 

as as 
sT=s -L.C-2.J 

” v ac aJ (44’) 

aJ, aJ, 
Jf = J,- ac*C- %*J. (4”) 

Computing of the pertinent four-divergence yields 

-{a,(~6*8~)+V.(~6*J~)} = ;a,(6cY%r+6JYXs,,,) 

+~V.(6C.6J,,c+6J.6J,,J) = ;a,@C+U) 

+;V+~C+(J.Q+~J~U)] = 6u*&6C 

+;V+W&(Jq)]+cW4J = 6J.bVu 

f 6~ a v’& = 6J. 6vU+ 6(V’TU)e 6r = a,(; a*&) 

+V@*J,) (45) 

where s,,~ = 0 and, due to the conservation laws, 
equation (37), the last line represents the same 
excess entropy production as that obtained in 
equations (8) and (28) with the help of the entropy. 
In the above transformations the relation J, = J*u 
was used to determine the partial derivatives 
J$,~ = aqac = J - aujac ; J,,~ = aJ,jaJ = U. Equa- 
tion (45) describes equivalence of the thermo- 
dynamic potential of the entropy and its Legendre 
transform as a criterion describing the perturbation 
dynamics. 

From a variational expression describing the second 
law [or the unperturbed counterpart of the functional 
(28)] written in the form of the vanishing integral 

min 

1 
+ 2R-1 :(v”u)v”u)+w~ aC(u) at +V*J-v’r 

one can pass to various thermodynamic potentials 
associated with appropriate constraints. For any new 
thermodynamic potential, in the functionals like that 
of equation (46), there is no Lagrange multiplier 
before the perturbed four-divergence of the second 
differential of that thermodynamic potential. Hence, 
one can obtain the multiplier-free four-divergence of 
a new thermodynamic potential by taking the product 
of the integrand of equation (46) and the reciprocal 
of a pertinent Lagrange multiplier. However, there 
are some practical limitations for this rule since the 
concentrations of individual components are not 
really suitable to be new potentials due to the source 
terms they contain. The balances of energy-type quan- 
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tities, such as energy, free energy, etc., are suitable. 
Writing the integrand of equation (46) as follows 

rnin~~~~T~’ ({k TI-‘(u) : JJf ; TL(u) : VuVu 

+;TR:rr+;(TR)-‘:v’TTu)(v’TTu) 

+ i Twk 
ack (u) 

k=l 
,,+V.Jk-(v’r)k 

(47) 

one can pass to the energy representation of ther- 
modynamics. In the energy representation, the 
entropy flux J, replaces the energy flux J, of the 
entropy representation as an independent variable, 
whereas the other fluxes remain the same. With the 
entropy flux expression, equation (9), written in the 
form 

(pk = p,M,M; ’ - pk) the transport part of the excess 
entropy production 0: transforms as follows 

a; = J-Vu = -T-l 
{ 

J; T-‘VT 

n--l 
-iF, Ji.78(P,T-‘)+i.7p(~T-‘) 

1 

n--l 
= -TP’ 

{( 
TJ,- 1 /ikJk+& 

I > 
* T-‘VT 

n-l 
-,&, Ji.7V(PiT-‘)+i.~(~T-‘) 

I 
(49) 

thus yielding, in terms of the primed fluxes and forces 

{ 

n--l 
o: = J-Vu = -T-’ J,VT- c J,Vpk+i*V4 

I 1 

= - T- ‘J’ * Vu’. (50) 

Inclusion of the chemical reaction contribution into 
equation (50) and taking the second-order per- 
turbations leads to the total excess entropy production 
in the two forms 

= - T-‘iaz = T-‘(&J’~VGu’+6A~6r). (51) 

The second line expression contains actually the excess 

of the energy dissipation 

icz = -6J’*Vhu’-6A.h. (52) 

The chemical affinities A” and A = TA” in these forms 
are consistent with the classical definition, equation 
(32). The two sets of the phenomenological equations 
are the non-primed and primed forms of the relations 
J = L * Vu and r = R * A with the positive transport 
conductances L and L’ and positive chemical resist- 
ances R and R’. These coefficients, which may depend 
on the reference state, are linked respectively by 
L’ = TL and R’ = RT. 

With the components of the entropy four-flux 
(s,, J,) as independent variables, the matrix of inde- 
pendent fluxes is 

J’=(J,,J,,J, ,..., Jn-,,i)T (53) 

and the corresponding column vector of new densities 
C’ is 

C’=(~“,c,,c*,.~.,c,-I,c,,)=. (54) 

Again, c,, = 0 (electroneutrality). The new inde- 
pendent transfer potentials are 

u’(--T,Li,,P2,...,P,-,,-~) (55) 

(,& = p,M,M,;’ -pk). their gradients are inde- 
pendent forces of the transport processes. The Gibbs 
differential for the governing potential, which is now 
the energy density e, = pe, is written in the form 

Se, = -u’.K’; 6et = -6u’*K’ > 0. (56) 

In order not to change signs of the Lagrange multi- 
pliers a new vector u’ has been defined in equation (55) 
so that it appears with minus sign in equation (56). 
This definition also ensures a conformal invariance 
of the two production expressions in equation (51). 

It is quite essential that due to the change of con- 
straints to those involving the entropy, and the trans- 
formation of the Lagrange multipliers w to the new 
frame (primed variables w’) corresponding with new 
constraints, the energy density e, becomes the new 
potential of the system subject to the constraint of the 
sourceless entropy. In the new representation, with 
the state variables C’, J’, the governing functional (47) 
becomes 

rnin~~~~ T-’ ( {i L’- 1 (u’) : J’J’ + ; L’(d) : VU’VU’ 

+ iR’:rr+ iIt_’ :(v”u’)(v”u’) 

(57) 
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Here w& = - T and J, = - J’u’ and in agreement with 
equation (48). The transformations of the Onsager’s 
conductance and capacitance matrices, L and a, fol- 
low the established rule, L’ = PLPT and a’ = Pap=, 
when the transformation of fluxes is of the form 
J’ = PJ ; see, e.g. [62]). As in the entropy represen- 
tation, the introd.uction of dummy stoichiometric 
coefficients, such which vanish when k = 0 and k = n, 
is needed to take formally all considered entities (the 
entropy, components, and electric charge) in the stan- 
dard vector of chemical affinities, A = - uTp. The cor- 
responding transformation to the extended affinity, 
which deals with ar’l independent potentials (the vector 
u’, equation (60)) is 

A, = - i v,,pi = - i vij(pnivi~, -/xi) 
i=l i= I 

n-l 

= i; v& =+ (dTlqj. (58) 

In the extended affinity of the energy represen- 
tation, Al = (v”u’)~, the component index changes 
from 0 (entropy) Ithrough 1, 2 . . . n- 1 (independent 
components) to n (electric current). The stoi- 
chiometric matrix coincides in the new frame with the 
original one, equation (31), with the same dummy 
coefficients, provided that the dissipation expression 
in the first line of equation (57) is now assigned to the 
total energy. It follows from equation (57) that such 
an interchange of the roles of the energy and entropy 
is optional for isothermal processes, but it is necessary 
whenever the temperature T is not constant (thermal 
inhomogeneity). In view of the positivity of the tem- 
perature coefficient T-’ before the large brackets ( ) 
of equation (57) it is clear that an analogous integral, 
obtained by taking T-’ off the integral, equation (57) 
vanishes on its extremal surfaces as well ; this obser- 
vation shows how one is lead to the energy functional. 
Such a functional contains, as its integral, the energy 
dissipated plus the product of the new Lagrange 
multiplier vector and the appropriate balance con- 
straints. The perturbed form of the energy integral is 

- : 6’E(t2) = min 
( 

- $?E(1,) 

s t2 1 
+ 

I,,.4 
262.J~(SJ’,6u’)*dAd! 

I2 1 
+ 

5 { f1.V 
2L’-’ (III’) : 6J’6J’ ++‘(u’) : V6u’V6u’ 

+ ; R’ : SrGr + i;(Rr) - ’ :(v’=&l’)(v’=Gu’) 

+ .&, . asc’w --+V*&J’--v’6r at (59) 

It is the energy, not the entropy, which is the poten- 
tial function for the primed set of constraints and 
associated variables. This result represents the exten- 

sion of Callen’s [63] postulational thermodynamics 
to nonequilibrium, spatially inhomogeneous systems. 
The perturbed constraints, which now comprise the 
balances of mass, electric charge and the sourceless 
entropy, have been multiplied by 6w’ rather than by 
- 6~‘. This assures the identification 6w’ = 6u’ rather 
than - 6~’ = 6~’ at local equilibrium. New perturbed 
balances are build into the energy functional, equation 
(59), with the help of the vector of the Lagrangian 
multipliers 6w’ = (SW;, 6w;) aw;, . . . ) c5w:_ 1) C-SW;). 
The extremum value of the multiplier 6~’ in the energy 
function, equation (59) is the perturbed vector of the 
kinetic conjugates 6~’ of the densities C’, equation 
(54). On the extremal surfaces of the energy func- 
tional, equation (59) the vector 6w’ coincides with 
the transport potential vector 6u’, equation (55) in 
the limiting situation of the local thermal equilibrium 

w’=u’=(-T,/I,,p2 ,..., A_,,-4). (60) 

This may be compared with the analogous equality in 
the entropy representation 

w=u=(T-‘,p,T-‘,j&T- ,..., 

IA-1 T-‘, -4T-‘). l(5) 

Again, off local equilibrium w’ and u’ are generally 
two distinctive field variables in the thermodynamic 
functional. 

It follows from equation (57) that, with the 
approach based on invariant dissipation intensity, the 
direct determination of the free energy changes from 
the entropy or energy dissipation expressions is con- 
sistent only for systems with homogeneous T. This 
restricted availability of the free-energy dissipation 
data from the popular entropy dissipation data by no 
means excludes the applications of F to nonisothermal 
systems. Such applications involve, however, separate 
methods of construction for general functionals of the 
free energy, which we won’t discuss here. A simplified 
free-energy representation, applicable to thermally 
homogeneous systems, is still quite useful. From equa- 
tion (57) the perturbed functional of the thermally 
homogeneous free-energy is 

- ;6’F(t,) = min 
( 

- ;c?F(r,) 

i 

1X 1 
+ 

II,A 
,?i2J,(6J’,6u’).dAdt 

12 1 
+ 

s I 
2L’-‘(u’) : 6J’6J’ 

I,.V 

+ i L’(u) : V&r’V&r + f R’ : 6r& 

1 
+ $R’)- ’ :(v’=~u’)(v’=~u’) +6w’ 

(61) 
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with Jf = J,- TJ,, as follows from equation (57). The 
following definitions apply 

J’ = (J,, J2,. . . , J,_, , i)’ (62) 

C’=(C,,C2,...,C”-,,C,,)T (63) 
\ 

u’=@,,P*,...,iL1, -4) (64) 

(pk = p,,c,MkM; ’ - pk). In the linear theory, the matr- 
ices L’, II’, etc., of the representation are obtained 
from the matrices L’, II’ of the energy representation 
by rejection of entries corresponding to the entropy. 
Yet, in any nonlinear descriptions they are functions 
of the temperature T and contain T as a parameter. 
This is the frame where many practical kinetic 
relationships is embedded. The Euler-Lagrange equa- 
tions of equation (61) with respect to the per- 
turbations 6w’, 6J’, and Sr and 6~’ describe the per- 
turbed dynamics of isothermal reaction-diffusion 

the superscript T over the corresponding ther- 
modynamic quantities.) Using in the gauged func- 
tional the kinetic equations for perturbations, equa- 
tion (66) and (67) the following functional is obtained 

;6y zz - s[ I 

SC($) .!g + $(p’) : VSW’VSW’ 

- &‘) : V6p’V6p’+;R’-’ :(V”6w’)(V’Tw) 

-;,‘-I :(~~6p’)(v’~6p’) dxdt (69) 1 
where 

~‘~(~;,~;,...,~~-I,~) 

= -u’= -(p,,p* ,...) /In-,, -4). (5’) 
asd(dj ~ +V.dJ’-v’6r = 0 

at (65) 

L’(u’) - ’ - 6J’ = V6w’ (66) 

R(u’) - 6r = v’~Gw’ (67) 

g(u) F = V *(L’VGu’) - v’R - ’ aA 

Here, to comply with the popular definitions of diffu- 
sivity in equation (70) and (79), we have modified 
our previous designations replacing the tilde transfer 
potentials pk = p”M,M; ’ - pkr by the primed poten- 
tials & = pk -p,MkM; ‘, with inverted signs. The 
local equilibrium corresponds with the equalities 
w’ = u’ or w’ = -$. The temperature T is the con- 
stant parameter in the above equation. 

.,zti V *(L’VGu’) - v’6r. (68) 

Here g = h’(d)/& is the positive hessian of the iso- 
thermal free energy and A = v’~u’. The perturbed 
transport and rate equations of thermally homo- 
geneous systems are contained in these formulae. 

For practical purposes however, a modified form 
of equation (69) is suitable, which uses as state vari- 
ables the concentrations c’ instead of the primed 
chemical potentials p’. With the former variables, the 
four-dimensional functional describing the free energy 
excess is 

6. DISSIPATIVE CANONICAL EQUATIONS FOR 

PERTURBATIONS 

;sy = - 
S[ 

I 
SC’. fg + ;L’@‘) : VSw’V6w’ 

Unperturbed thermodynamic functionals, gauged 
by subtraction of the four-divergence (a/&,V*) of a 
vector, here a/&(w,c,) + V .(wkJk), or linear com- 
binations of such four-divergences, have found some 
useful applications to describe irreversible dynamics 
in terms of a Hamiltonian [60]. In the case of fields, 
these functionals lead directly to dissipative Ham- 
iltonians identical with those of Onsager’s discrete 
theory, thus making possible related canonical for- 
mulations with only one type of brackets (Poissonian 
brackets). Here we extend these formalisms to per- 
turbations. This seems important since the bracket 
approaches which stem from dissipative gen- 
eralizations of concepts of ideal continua use two sorts 
of brackets [15, 16, 18, 201 and, as such, are not 
directly associated with extrema of definite physical 
quantities. 

- ;w/(d) : VSc’VSc’+ ;Ir I :(v’Tsw’)(v’Tsw’) 

- ;R’-l :(v”Sp’(c’))(v”Sp’(c’)) dxdt (70) 1 
where W’ = ($.d/&‘)‘L’(ajd/&‘) is a symmetric 
matrix which contains the isothermal diffusivity 
matrix, D’ = L’ a$/&‘. The functional, equation (70) 
incorporates the perturbed Hamiltonian 

$S*H, = r [;L’(c’) : V6w’V6w’ 

+;R’-’ :(~‘~Gw’)(v’~Gw’) -f W’(c’) : V&V& 

-;R’-’ :(v”S~‘(c’))(v”S$(c’))] dx. (71) 

Let us outline the approach for the free energy This is the Hamiltonian of Onsager’s type since it 
functional, equation (61), gauged as described above. contains the difference of the two perturbed dis- 
(Gauging and transpose matrices are designated by sipation functions. In terms of the Hamiltonian (71) 
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the Euler-Lagrange equation for the perturbed free- 
energy (70) with respect to the perturbation 6~; is the 
first canonical equation 

ah; @pm 
at 

- - -- = -v .($yV&‘), 
SC; 

+ [(apf/aCpx- 1 BAIT. (72) 

The symbols S/SC; refers to the functional derivatives 
in the three-dimensional physical space. Otherwise, 
the extremum conditions of 1/26*Fz with respect to 
the adjoints 6~; al-e 

asc; 
at 

_gL -v.(~lL;kvsw;) 

+ jg, RJy’v$Aj(w’) = -V ‘(VkbC;) +j$, v&rj(w’)~ 

(73) 

Here the represe:ntations of perturbed fluxes 6J and 
6r in terms of 6w, have been exploited. The two vector 
canonical equations (72) and (73) coincide at the local 
equilibrium, when w’ = u’ = -$. Then a common 
equation set follows which can be written exclusively 
in terms of the perturbed state variables 6c;, as the set 
of linear equations of change for perturbations in a 
diffusion-reaction system 

% = v- ($D:,V&;)+$, v$r,(e’) 

(= -S$). (74) 

Equation (74) sterns from the nonlinear equations of 
unperturbed dynamics, with incorporated laws of the 
isothermal Onsager-Ohm transports and nonlinear 
chemical kinetics of Guldberg and Waage. The cases 
when linear or quasilinear equations of change lead 
in narrowing subspaces to nonlinear equations are 
known from the analytical theory of energy and mass 
transfer [75]. A co:mparison of the approach based on 
perturbations of thermodynamic potentials with the 
action-related approaches, which use two sorts of 
brackets, Poissonian and dissipative bracket, is in pro- 
gress [76]. 

8. LOCAL EQUILIBRIUM AS THE SUFFICIENT 
CONDITION FOR LOCAL STABILITY 

Is the ‘local thermal equilibrium’ effect sufficient for 
stability? Since the phenomenological equations hold 
on the extremal surfaces of the functional, equation 
(29) then, for the vanishing boundary perturbations, 
the partial time d.erivative of the three-dimensional 

integral extracted from equation (29) to be tested as 
a Liapounov criterion is 

;(;s’P)+{J-[; L : (V6uV6u + V6wV6w) 

+ ;R-’ :((v’T6~)(v’T8~)+(v’T8~)(v’Tdu)) dI’ 1 1 
= 

s 
{L : [vhv a,(h) + VGWV a,(h)] 

” 

+R-’ :((v’Tsw)(v’T a,sw) + (v”su)(v’T a,su))) dl’ 

= 
s 

{ -v .(Lv~) a,(su) - v .(LvG~) aI 
” 

+R-’ :((V’TdW)(V’ a,hW)i- (V’Tih)(V’T a&h))} dV 

(75) 

where the divergence theorem was used and t 
boundary term with vanishing perturbations was s t 
to zero. From the last integral of equation (75) w’ h 

tion (34) and the condition u = w, the basic inequ 
follows 

i 

the help of equation (40) the affinity definition, eq a- 
ity 

where a(u) s - X(u)/au is the negative of the entropy 
hessian. Since a > 0, the condition known from the 
classical thermodynamics, the above time derivative 
is negative whenever u = w. Now let us note that the 
excess entropy production V = i 6’P in the form given 
by the first integral of equation (75) is locally positive, 
whenever the constancy of the transport coefficients 
and chemical resistances can be assumed, cor- 
responding with small perturbations. Then, on the 
basis of the Liapounov second theorem applied to the 
positive potential function V = i S2P and its negative 
time derivative, l/ dS’P/dt < 0, the local equilibrium, 
which means that both equalities u = w and 6u = 6w 
hold, is sufficient for the local asymptotic stability of 
the steady state close to equilibrium. Yet, neither the 
‘local thermodynamic limit’ nor the ‘local thermal 
equilibrium’ in the form of the condition u = w (and 
6u = 6w) need necessarily follow for a stable process. 
For large perturbations, however, the terms associ- 
ated with the change of the transport and rate 
coefficients with state may be essential and the stability 
cannot be proven. Thus, it is precisely the nonlinearity 
property of the transport coefficients and (especially) 
chemical resistances which may cause violation of 
stability of chemically reacting fields at large per- 
turbations even at ‘local equilibrium’. The similar con- 
clusion has been obtained for lumped systems [76]. 
This approach adds therefore an important ingredient 
to the earlier linear stability analyses. In particular, 
the methods developed here can be extended to the 
linear wave systems [77, 781. The conclusions can be 
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compared with those drawn when other methods are 
applied to stability of nonlinear chemical systems, 
such as normal modes approach [79] and the energy 

22. 

method [80]. The thermodynamic approach applied 
here has the unique virtue of easy handling the process 
constraints, the point which may be difficult to 23. 

accomplish by other methods. 
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